

Professional Development Course on VLSI System on a Chip Design (Full-time)

Sandeepani offers the **16-week full time (Monday – Friday)** Professional Development Course for recent graduates and post-graduates in Electronics/Electrical/Telecommunication engineering. This program is specifically designed with an objective to provide a sound platform for the students and prepare them for a successful career in the fields of VLSI Design and verification with FPGAs.

The PDC offers the right blend of classroom teaching, quality hands-on training from 'concept-toproject', covering design methodology using industry standard tools and practices. The course includes a project work as well.

Placement assistance is provided to those who complete all modules of this course and a preplacement test.

Course Duration: 16 Weeks		Course Structure and Outline
Mod.	Module Title	What You Learn
P1 (3 Days)	Engineering Primer	 Number systems Logic gates Boolean expressions Introduction to registers and counters Introduction to Embedded systems
C1 (10 Days)	Advanced Digital System Design	 Synchronous Finite State Machine Design Data-path elements – Arithmetic Structures Introduction to Programmable Platforms Design Capture and Simulation Practical Digital System Design Examples
C2 (10 Days)	Verilog	 Hardware Modeling Overview, Verilog language concepts Modules and Ports Dataflow Modeling Introduction to Test benches Operators Procedural Statements Controlled Operation Statements Coding for Finite State Machines Coding For Synthesis Tasks and Functions Advanced Verilog Test benches
C3 (15 Days)	FPGA Design	 FPGA Architecture - Basic Components of FPGA (LUT, CLB, Switch Matrix, IOB), FPGA Architecture of different families: 7-series and UltraScale devices, Zynq FPGA Design Flow – Xilinx Vivado tool Flow, Reading Reports, Implementing IP cores, Debugging Using Vivado Analyzer Optimal FPGA Design – HDL Coding Techniques for FPGA, FPGA Design Techniques, Synthesis Techniques, Implementation Options Static Timing Analysis – Global Timing Constraints, Path specific timing constraints, Achieving Timing Closure,

		Introduction to Reset techniques, Clock Domain Crossing, Multiple Clock Domains
C4 (5 days)	Tcl Scripting	 The need for scripting Basic syntax of the Tcl Language Introduction to the Vivado Tcl Environment Tcl-based project flow and non Project batch flow Data types, variables and expressions, conditional loops, data structures and Xilinx-specific Tcl commands Tcl procedures and packages Creating your own scripts
C5 (10 days)	FPGA design using Zynq	 SoC design flow System on Chip with Zynq Processing system and Programmable logic Designing with Zynq – Zedboards, Zybo Zynq vs FPGA Microblaze, Picoblaze and ARM Cortex A9 processor types IP Block design IP reuse and Integration AXI interfacing Adventures with IP integrator Introduction to Vivado HLS/SDSoC/MPSoC
Integrated in the course	Course Project	Design/Implementation
Elective 1 (10 Days)	Functional Verification with SystemVerilog	 Introduction to Verification and Verification Plan Verification Tools Stimulus and Response SystemVerilog Basics – Introduction to SystemVerilog, Enhancement made in SystemVerilog over Verilog, Interface and Modports Introduction to Bus Functional Models Verification environment and its components SystemVerilog for Verification - SystemVerilog Event Ordering, Clocking block and Program block, OOP's Concept of SystemVerilog - Parameterized classes, Virtual interface, Constrained Randomization techniques, Functional Coverage (Coverage Driven Verification), SystemVerilog Assertions
Elective 2 (5 Days)	UVM	 Introduction to UVM UVM Classes UVM Factory Sequence Item, Sequencer, Virtual Sequences Transaction Level Modeling UVM Reporting Methods Development of Reusable Verification Environment

Note:

- 1) The contents listed above is a representative outline and is subject to change at short notice in compliance with the current industry demands
- 2) Legend: P# Primer Module, C# Core Module